A dual role of divalent metal ions in catalysis and folding of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1
نویسندگان
چکیده
RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNH1) consists of an N-terminal domain with unknown function and a C-terminal RNase H domain. It is characterized by the high content of acidic residues on the protein surface. The far- and near-UV CD spectra of Halo-RNH1 suggested that Halo-RNH1 assumes a partially folded structure in the absence of salt and divalent metal ions. It requires either salt or divalent metal ions for folding. However, thermal denaturation of Halo-RNH1 analyzed in the presence of salt and/or divalent metal ions by CD spectroscopy suggested that salt and divalent metal ions independently stabilize the protein and thereby facilitate folding. Divalent metal ions stabilize the protein probably by binding mainly to the active site and suppressing negative charge repulsions at this site. Salt stabilizes the protein probably by increasing hydrophobic interactions at the protein core and decreasing negative charge repulsions on the protein surface. Halo-RNH1 exhibited activity in the presence of divalent metal ions regardless of the presence or absence of 3 M NaCl. However, higher concentrations of divalent metal ions are required for activity in the absence of salt to facilitate folding. Thus, divalent metal ions play a dual role in catalysis and folding of Halo-RNH1. Construction of the Halo-RNH1 derivatives lacking an N- or C-terminal domain, followed by biochemical characterizations, indicated that an N-terminal domain is dispensable for stability, activity, folding, and substrate binding of Halo-RNH1.
منابع مشابه
Divalent Metal Ion-Induced Folding Mechanism of RNase H1 from Extreme Halophilic Archaeon Halobacterium sp. NRC-1
RNase H1 from Halobacterium sp. NRC-1 (Halo-RNase H1) is characterized by the abundance of acidic residues on the surface, including bi/quad-aspartate site residues. Halo-RNase H1 exists in partially folded (I) and native (N) states in low-salt and high-salt conditions respectively. Its folding is also induced by divalent metal ions. To understand this unique folding mechanism of Halo-RNase H1,...
متن کاملThe cobY gene of the archaeon Halobacterium sp. strain NRC-1 is required for de novo cobamide synthesis.
Genetic and nutritional analyses of mutants of the extremely halophilic archaeon Halobacterium sp. strain NRC-1 showed that open reading frame (ORF) Vng1581C encodes a protein with nucleoside triphosphate:adenosylcobinamide-phosphate nucleotidyltransferase enzyme activity. This activity was previously associated with the cobY gene of the methanogenic archaeon Methanobacterium thermoautotrophicu...
متن کاملTranscriptional profiling of the model Archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature
BACKGROUND The model halophile Halobacterium sp. NRC-1 was among the first Archaea to be completely sequenced and many post-genomic tools, including whole genome DNA microarrays are now being applied to its analysis. This extremophile displays tolerance to multiple stresses, including high salinity, extreme (non-mesophilic) temperatures, lack of oxygen, and ultraviolet and ionizing radiation. ...
متن کاملDna Mismatch Repair and Response to Oxidative Stress in the Extremely Halophilic Archaeon Halobacterium Sp. Strain Nrc-1
Title of Document: DNA MISMATCH REPAIR AND RESPONSE TO OXIDATIVE STRESS IN THE EXTREMELY HALOPHILIC ARCHAEON HALOBACTERIUM SP. STRAIN NRC-1 Courtney Rae Busch, Doctor of Philosophy, 2008 Directed By: Assistant Professor Dr. Jocelyne DiRuggiero, Department of Cell Biology and Molecular Genetics Halobacterium is an extremely halophilic archaeon that has homologs of the key proteins, MutS and MutL...
متن کاملProteomic analysis of an extreme halophilic archaeon, Halobacterium sp. NRC-1.
Halobacterium sp. NRC-1 insoluble membrane and soluble cytoplasmic proteins were isolated by ultracentrifugation of whole cell lysate. Using an ion trap mass spectrometer equipped with a C18 trap electrospray ionization emitter/micro-liquid chromatography column, a number of trypsin-generated peptide tags from 426 unique proteins were identified. This represents approximately one-fifth of the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2012